

Consider stopping if >3 hours, 3.7 x eGFR ml contrast, Air Kerma > 5 Gy unless procedure well advanced

Antegrade approach

- Single wire technique
- Parallel wire technique
- Dissection reentry

In conjunction with IVUS-guided approach

Antegrade wire based strategy

	Visible micro channels	Tapered proximal cap	Blunt proximal cap	
Proximal Cap	Low penetration force	Low penetration	Intermediate penetration	
	wire with polymer	force wire	force wire	
	jacket and tapered tip	Ļ	\downarrow	
	Intermediate penetration	Intermediate penetratic	on High penetration	
	force wire	force wire	force wire	
CTO body	Length <20 mm	Reasonable to continue with wire used to cross proximal cap		
	Length >20 mm or ambiguous course	Step down to a low penetration force wire of intermediate non-tapered wire		

Distal Cap Escalation from softer more steerable wire to a higher penetration-force wire may be required.

Single wire technique

Antegrade wire based strategy

60/M, Long CTO with tapered cap Poor distal target with good interventional collateral

Long CTO with tapered cap

Cosair with fielder XT

Wire bending

Wire bending

CardioVascular Research Foundation

Long CTO with tapered cap

Corsair with fielder XT

Corsair with fielder XT

67/M Ambiguous stump Poor distal target

Consider stopping if >3 hours, 3.7 x eGFR ml contrast, Air Kerma > 5 Gy unless procedure well advanced

Antegrade wire based strategy

Tip angiography

Corsair with Gaia 2: cap puncture

Corsair with Fielder X : CTO body (Step-down)

Corsair with Caia 2 : distal cap puncture (Step-up)

Wire bending

Wire confirmation

Corsair advance

Final angiography

LAD CTO with anomalous origin RCA CTO

Baseline angiography

Distal true lumen wiring with fielder XT

Final angiography

Tip angiography

XB 3.5 RCA guiding

Retrograde wiring with sion and snaring

2.5 balloon Finecross

Guidzillar

Antegrade wiring and stenting

Final angiography

Medical Center

56/M, Long RCA CTO with no stump

HEAVY CALCIFATION IN PROXIMAL CAP

IVUS exam: Soft proximal cap with lumen

RCA

IVUS-guided Fielder XT

Corsair advance

Fielder XT

Gaia 2 (step-up escalation)

Gaia 2 : Adavnce into true lumen

Final angiography

62/M, Prox LAD CTO with no stump

HEAVY CALCIFATION IN PROXIMAL CAP Soft plaque in CTO body and distal cap

IVUS guided puncture With Gaia 2 IVUS guided puncture With Gaia 2: subintimal space

Calcium in prox cap

Additional IVUS guided Puncture With conquest

CardioVascular Research Foundation

Corsair advance

Fielder XT (step down escalation)

Fielder XT wiring

Final result

ASAN Medical Center

Parallel wire technique

67/M, Failed OM CTO x 2 times

Corsair with fielder XT

fielder XT --->

Wire in the false lumen

rdioVascular Research Foundation

fielder XT --->

Parallel wire with Gaia 2

Gaia 2

Wire in the true lumen

71/M, proximal RCA CTO No proximal stump & Poor distal target

IVUS guided puncture With Gaia 2 wire

Gaia 2 wire advance Under guidance of multiple projection

Final angiography

Antegrade wire escalation Up & down escalation

- Proximal cap: image guidance or morphology
- CTO body: image guidance or resistance
- Distal cap: image guidance or resistance

Dissection reentry

Baseline angiography

Good interventional collateral

Subintimal wiring with caravel

Microcatheter advance and wire exchange

Wire removal and straw technique balloon positioning by angiography

Straw technique again through stingray balloon: Subintimal hematoma suction with 3 way system

Reentry using Stingray wire

Angulation: concern for vessel damage with stingray wire

Stick and Swab using Fielder XT wire

Wire position confirmed

Final angiography

Antegrade vs. retrograde in Korea

Asan medical center registry

Initial wire for antegrade Asan medical center registry

Final crossing wire for antegrade Asan medical center registry

Microcatheter for antegrade Asan medical center registry

Crossing technique for antegrade Asan medical center registry

IVUS- guided wiring : 10%

Antegrade vs. retrograde in Korea Asan medical center registry

Figure 2(A). Procedural success rate

Figure 2(B). Procedure number over time

Antegrade approach Trends of J-CTO score and technical success rate

Lesion and Procedural Characteristics

Successful CTO-PCI	Antegrade only (N=628)	Retrograde attempted (N=187)	P value	
J CTO score	1.8±1.0	2.5±1.0	<0.001	
Blunt proximal cap	382 (60.8)	135 (72.2)	0.01	
Moderate/severe calcification	306 (48.7)	99 (52.9)	0.35	
Bending > 45°	223 (35.5)	86 (46.0)	0.01	
Occlusion length >20mm	123 (19.6)	85 (45.5)	<0.001	
Retry lesion	71 (11.3)	85 (45.5)	<0.001	
Number of stent per lesion	1.7±0.8	2.2±0.8	<0.001	
Stent length, mm	48.7±22.6	66.9±22.9	<0.001	
Average stent diameter, mm	3.2±0.3	3.2±0.3	0.512	
IVUS use	578 (92.0)	171 (91.4)	0.913	
Contrast media amount, ml	386.9±181.0	538.0±243.9	<0.001	
Total fluoroscopy time, min	34.3±45.7	72.6±42.1	<0.001	

Relationship between CTO length, Total lesion length, and final stent length

Hazard Ratios of Clinical Outcomes Medium Follow-up Time: 4.0 years

Outcome	Antegrade only (N=599)	Retrograde attempted (N=129)	HR (95% CI)	<i>P</i> value	IPTW adjusted HR (95% CI)	P value
Target lesion failure	34 (7.0)	14 (14.1)	2.27 (1.29–3.99)	0.005	2.55 (1.50–4.36)	<0.001
Target vessel failure	36 (7.4)	15 (15.1)	2.29 (1.32–3.96)	0.003	2.64 (1.57–4.42)	<0.001
Death	27 (5.5)	9 (9.5)	1.36 (0.65–2.83)	0.41	1.36 (0.66–2.84)	0.41
Death or MI	36 (7.2)	11 (11.8)	1.41 (0.74–2.66)	0.29	1.47 (0.79–2.74)	0.22
MACE	50 (10.8)	15 (20.0)	1.98 (1.23–3.19)	0.005	2.20 (1.39–3.48)	<0.001
TLR	18 (3.7)	8 (7.4)	2.94 (1.41–6.12)	0.004	2.59 (1.52–4.42)	<0.001
TVR	20 (4.1)	9 (8.5)	2.91 (1.44–5.86)	0.003	3.38 (1.75–6.52)	<0.001

4-year event rates are shown as Kaplan–Meier estimates (number and percentage of events). Hazard ratios are for patients who underwent retrograde procedure compared with patients with antegrade only procedure.

Conclusions

- After adoption of retrograde approach, more challenging CTO lesions were tried to open, thereby use of antegrade approach decreased over times.
- Fielder wire, Gaia wire, and Corsair microcatheter are widely used for antegrade approach, such devices improved overall success rate in conjunction with retrograde approach.
- Proper use of antegrade single wire or parallel wire technique with or without IVUS guidance make procedure simple and improve success rate.

Conclusions

- Antegrade approach usually was done in less complex lesion subset, which was translated into less complex procedural characteristics, shorter stent length, and good long-term outcomes compared to retrograde approach
- Therefore, antegrade approach is still main default strategy for less complex CTO and essential for success after failed retrograde approach
- If wire-based antegrade approach is failed, reentry device could be option instead of retrograde approach to reduce procedural time.

Thank you for your attention

